Mechanical and Corrosion Behavior of New Generation Ti-45Nb Porous Alloys Implant Devices
نویسندگان
چکیده
Strategies to improve the mechanical compatibility of Ti-based materials for hard tissue implant applications are directed towards significant stiffness reduction by means of the adjustment of suitable β-phases and porous device architectures. In the present study, the effect of different compaction routes of the gas-atomized β-Ti-45Nb powder on the sample architecture, porosity, and on resulting mechanical properties in compression was investigated. Green powder compacted and sintered at 1000 ◦C had a porosity varying between 8% and 12%, strength between 260 and 310 MPa, and Young’s modulus ranging between 18 and 21 GPa. Hot pressing of the powder without or with subsequent sintering resulted in microporosity varying between 1% and 3%, ultimate strength varying between 635 and 735 MPa, and Young’s modulus between 55 and 69 GPa. Samples produced with NaCl space-holder by hot-pressing resulted in a macroporosity of 45% and a high strength of >200 MPa, which is higher than the strength of a human cortical bone. Finally, the corrosion tests were carried out to prove that the presence of residual NaCl traces will not influence the performance of the porous implant in the human body.
منابع مشابه
Microstructure Analysis of Ti-xPt Alloys and the Effect of Pt Content on the Mechanical Properties and Corrosion Behavior of Ti Alloys
The microstructure, mechanical properties, and corrosion behavior of binary Ti-xPt alloys containing 5, 10, 15 and 20 wt% Pt were investigated in order to develop new Ti-based dental materials possessing superior properties than those of commercially pure titanium (cp-Ti). All of the Ti-xPt (x = 5, 10, 15, 20) alloys showed hexagonal α-Ti structure with cubic Ti₃Pt intermetallic phase. The mech...
متن کاملStress-corrosion crack growth of Si-Na-K-Mg-Ca-P-O bioactive glasses in simulated human physiological environment.
This paper describes research on the stress-corrosion crack growth (SCCG) behavior of a new series of bioactive glasses designed to fabricate coatings on Ti and Co-Cr-based implant alloys. These glasses should provide improved implant fixation between implant and exhibit good mechanical stability in vivo. It is then important to develop an understanding of the mechanisms that control environmen...
متن کاملEffect of Nb on the Microstructure, Mechanical Properties, Corrosion Behavior, and Cytotoxicity of Ti-Nb Alloys
In this paper, the effects of Nb addition (5-20 wt %) on the microstructure, mechanical properties, corrosion behavior, and cytotoxicity of Ti-Nb alloys were investigated with the aim of understanding the relationship between phase/microstructure and various properties of Ti-xNb alloys. Phase/microstructure was analyzed using X-ray diffraction (XRD), SEM, and TEM. The results indicated that the...
متن کاملطراحی، تهیه و ارزیابی پوشش نوین هیدروکسی آپاتیت-تیتانیوم برای اندوایمپلنت دندانی
Nowadays, application of implants as a new method for replacing extracted teeth have been improved. So, many researches have been performed for improving the characteristics of implants. The aim of this study was to design and produce a desired coating in order to obtaining two goals including improvement of the corrosion behavior of metallic endodontic implant and the bone osseointegration sim...
متن کاملNew Developments of Ti-Based Alloys for Biomedical Applications
Ti-based alloys are finding ever-increasing applications in biomaterials due to their excellent mechanical, physical and biological performance. Nowdays, low modulus β-type Ti-based alloys are still being developed. Meanwhile, porous Ti-based alloys are being developed as an alternative orthopedic implant material, as they can provide good biological fixation through bone tissue ingrowth into t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2016